Архитектура, функционирования и основные характеристики центрального процессора

Скачать реферат на тему: Архитектура, функционирования и основные характеристики центрального процессора. В котором раскрыто функционирование центрального процессора. Рассмотрен анализ основных характеристик процессоров.
Author image
Ekaterina
Тип
Реферат
Дата загрузки
06.11.2024
Объем файла
7199 Кб
Количество страниц
26
Уникальность
Неизвестно
Стоимость работы:
400 руб.
500 руб.
Заказать написание работы может стоить дешевле

Введение

Сейчас, принято говорить, что центральный процессор является мозгом компьютера. Фактически, центральный процессор - это крошечный чип, связанный непосредственно с материнской платой, с большим вентилятором (кулером), подключенным непосредственно к нему. Без вентилятора центральный процессор очень быстро бы сгорел. На сегодняшний день на рынке есть две главные марки центральных процессоров: Intel и AMD. Различают также два различных центральных процессора: «гнездо» и разъем. «Гнездо» подсоединяется непосредственно к материнской плате, также оно имеет собственный вентилятор, в то время как разъем имеет оболочку, которая держится на центральном процессоре, и вентилятор, связанный с этой оболочкой. Нельзя выделить лучшее из этих двух типов, но «гнездо» становится все более популярным, и, таким образом, становится легче охлаждать процессор, что является главным фактором быстродействия компьютера. Скорость центрального процессора измеряется в Мегагерцах (Мгц), свыше 1000 Мгц называется Гигагерцем (ГГц). Одно основное неправильное представление относительно центрального процессора – это то, что чем больше число (мегагерц/гигагерц), тем быстрее центральный процессор. Целью данной курсовой работы является изучение архитектуры, функционирования и основных характеристик центрального процессора.

Введение 2
1. Общая архитектура центрального процессора 3
2. Принцип работы центрального процессора 11
3. Сравнительный анализ процессоров Intel и AMD. 20
Цена и ценность процессора 20
AMD или Intel | Общая производительность 21
Характеристики и возможности процессоров 22
Оверклокинг 26
Энергопотребление и тепловыделение 26
Драйверы и ПО 27
Литография 28
Архитектура процессоров 29
Безопасность 30
Список использованной литературы 34

Список использованной литературы

Акулов О. А., Медведьев Н. В. Информатика: базовый курс. М.: Омега-Л, 2006.
Богумирский В.С. Руководство пользователя ПК. В 2-х ч. - СПб: Ассоциация OILCO, 1992. – 88 c.
Дорот В. А., Новиков Ф. Н. Толковый словарь современной компьютерной лексики. 2-е изд. СПб.: BHV, 2001.
Информатика: Учебник. Под ред. Макаровой Н. В. М.: Финансы и статистика, 2000.
Лесничая И.Г. Информатика и информационные технологии. Учебное пособие. М.: Издательство Эксмо, 2007
Макарова Н.В., Николайчук Г.С., Титова Ю.Ф. Компьютерное делопроизводство. - СПб.: Издательский дом «Питер», 2002.
Под ред. Косарева В.П., Королева Ю.М. Экономическая информатика и вычислительная техника. - М.: Перспектива, 2000. - 99с.
Под ред. проф. Шуремова Е.Л., доц. Тимаковой Н.А., доц. Мамонтовой Е.А. Практикум по экономической информатике. - М.: Перспектива, 2000.
Попов В.Б. Основы компьютерных технологий. М. : Финансы и статистика, 2002.
Рассел Борланд. Running Word 6.0 для Windows (Русская редакция). -М.: ТОО Channel Trading Ltd., 2005. – 213 c.

Флаг IF предназначается для разрешения или запрещения (маскирования) внешних прерываний. При IF = 0 внешние прерывания запрещены, т. е. процессор не реагирует на их запросы. Флаг TF применяется для задания процессору пошагового режима, при котором процессор после выполнения каждой команды останавливается и ждет внешнего запуска. Пошаговый режим задается установкой флага TF= 1 и обычно необходим при отладке программ.Основные операции по обработке данных выполняются в арифметико-логическом устройстве (АЛУ), с которым связана схема коррекции результатов (СКР), используемая при работе с данными, представленными в двоично-десятичных кодах. Связь внутренних узлов ЦП с шиной ША/Д осуществляется через буфер шины БШ, состоящий из двунаправленных усилителей с тремя устойчивыми выходными состояниями. Усовершенствование архитектуры Intel 8086 связано также с введением в структуру микропроцессора специального сумматора (СМ) для вычисления адресов памяти. Как отмечалось выше, разрядность адресов микропроцессора равна 20. Однако для упрощения операций хранения и пересылки адресной информации процессор манипулирует 16-разрядными логическими адресами, к которым относятся начальные (базовые) адреса сегментов памяти и значения смещений в этих сегментах. Логические адреса используются для вычисления 20-разрядных физических (абсолютных) адресов с помощью следующей процедуры. Содержимое каждого сегментного регистра рассматривается как 16 старших разрядов А19-А4 начального адреса соответствующего сегмента. Младшие разряды A3-А0 этого адреса всегда полагаются равными нулю и поэтому не запоминаются в регистрах, а приписываются справа к старшим разрядам во время операции вычисления физических адресов. Эта операция выполняется сумматором адреса, расположенным в блоке БСШ, и состоит в сложении 20-разрядного начального адреса сегмента с 16-разрядным смещением, которое дополняется четырьмя старшими разрядами А19-А16, равными нулю, как показано на рис. 1.3. 

Похожие работы